Toward optimizing a self-creating neural network

نویسندگان

  • Jung-Hua Wang
  • Jen-Da Rau
  • Chung-Yun Peng
چکیده

This paper optimizes the performance of the growing cell structures (GCS) model in learning topology and vector quantization. Each node in GCS is attached with a resource counter. During the competitive learning process, the counter of the best-matching node is increased by a defined resource measure after each input presentation, and then all resource counters are decayed by a factor alpha. We show that the summation of all resource counters conserves. This conservation principle provides useful clues for exploring important characteristics of GCS, which in turn provide an insight into how the GCS can be optimized. In the context of information entropy, we show that performance of GCS in learning topology and vector quantization can be optimized by using alpha=0 incorporated with a threshold-free node-removal scheme, regardless of input data being stationary or nonstationary. The meaning of optimization is twofold: (1) for learning topology, the information entropy is maximized in terms of equiprobable criterion and (2) for leaning vector quantization, the use is minimized in terms of equi-error criterion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing of Iron Bioleaching from a Contaminated Kaolin Clay by the Use of Artificial Neural Network

In this research, the amount of Iron removal by bioleaching of a kaolin sample with high iron impurity with Aspergillus niger was optimized. In order to study the effect of initial pH, sucrose and spore concentration on iron, oxalic acid and citric acid concentration, more than twenty experiments were performed. The resulted data were utilized to train, validate and test the two layer artificia...

متن کامل

Bringing Up Robot: Fundamental Mechanisms For Creating A Self-Motivated, Self-Organizing Architecture

In this paper we propose an intrinsic developmental algorithm that is designed to allow a mobile robot to incrementally progress through levels of increasingly sophisticated behavior. We believe that the core ingredients for such a developmental algorithm are abstractions, anticipations, and self-motivations. We describe a multilevel, cascaded discovery and control architecture that includes th...

متن کامل

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

متن کامل

Neural coordination can be enhanced by occasional interruption of normal firing patterns: A self-optimizing spiking neural network model

The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attr...

متن کامل

Optimizing plant traits to increase yield quality and quantity in tobacco using artificial neural network

There are complex inter- and intra-relations between regressors (independent variables) andyield quantity (W) and quality (Q) in tobacco. For instance, nitrogen (N) increases W butdecreases Q; starch harms Q but soluble sugars promote it. The balance between (optimizationof) regressors is needed for simultaneous increase in W and Q components [higher potassium(K), medium nicotine and lower chlo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 2000